
 VACUUM 4/4/2011

When records are deleted from a table through an SQL DELETE, the deleted records are
referred to as "dead tuples". They are not removed from the db and the space they reside
in is NOT MARKED AS BEING AVAILABLE FOR RE-USE. Dead tuples are also
created in the case of updated records and records involved in a transaction rollback. The
VACUUM command must be run to make the "dead tuple" space available for reuse.

Running the vacuum command (without the "full" option) marks previously deleted (or
updated) records as being available for re-use within the table. It does not lock the table
being vacuumed. Running vacuum with the "analyze" option reads the records in the
tables and generates statistics used by the queries. This information is stored in the
pg_statistics table. Changes to the database made by a vacuum run are written to the
transaction logs (WALs).

The vacuum command cannot be executed from within a function or a transaction.

VACUUM FULL
A "vacuum full" attempts to remove deleted or updated records from the tables to make
the space reusable by other tables. It physically reorders the tables. While "vacuum full"
is running, an exclusive lock is placed on the table being vacuumed. This locks the table
for both reads and writes. A "vacuum full" run is NOT necessary to be run on a regular
basis.

Beginning with Version 9.0, a vacuum full rewrites the entire table including indexes.

VACUUM ALL
The postgres documentation recommends that sites routinely run a “vacuum all” to be
certain that all databases (including template1) are vacuumed. This can be done using the
following command:

vacuumdb -a -U postgres

Note that the “-U postgres” must be specified on the command line for this to work
correctly. Running “vacuumdb -a” without “-U postgres” while logged in as
user=postgres does NOT work.

"vacuum" and "vacuum full" can be run for an entire database or for individual tables.
See Section 21.1.1 of the PostgreSQL 7.4 Documentation entitled "Recovering disk
space" for information on strategies for running VACUUM.

Auto Vacuum
Version 8.2.x introduced the concept of auto vacuum where a vacuum job will be
automatically run if certain conditions are met. Also, only tables which need to be
vacuumed (based on a set of configurable parameters) are vacuumed. By default, this
feature is OFF in Version 8.2. In Versions 8.3.x and 8.4.x, this feature is ON by default.

Keep autovacuum enabled, and if required make it run
more not less. If autovacuum is keeping up with your
database's write load on 8.4 and above, you should not
need to vacuum manually. However, there may be cases
where a manual vacuum is necessary.

Q: What are the general guidelines under which
autovacuum will trigger? I was unaware it was turned
on by default for the newer versions. Would it be
worthwhile to leave the manual vacuuming on? Currently
it runs immediately after large sections of the tables
are deleted. Or would it be expected that autovac
would pick these changes up and run anyway?

A: Until 8.3, autovacuum was more of a proof of concept
rather than production ready code. By 8.3 two things
had happened, vacuum costing, which is important so you
can tune vacuuming / autovacuuming to your hardware and
usage patterns, and multi-threaded autovacuuming
daemon, which meant that autovac could now handle the
scenario where one or more table would take a long
(sometimes very long) time to vacuum, especially with
costing factors slowing it down, and another table
would get bloated while waiting its turn. With a server
with LOTS of random IO capability you can run quite a
few threads at once, since each one is only a small
impact against the maximum IO of the drive array. If
you've got 1,000 tables and a couple dozen big ones
that can take 30 minutes or more to vacuum, it's a good
thing to be able to run autovac on more than one at a
time.

The next HUGE improvement came with 8.4, which took the
free space map and put it on the drives, removing the
need to constantly monitor and adjust free space map to
prevent blowout. If you've got a well tuned <= pg 8.3
you're ok. If you need to tune an older version, it's
often easier AND safer to migrate to 8.4 or above.

Explanation of Vacuum Log Output
The last few lines of output from running a vacuum on an OHD db look as follows:

INFO: free space map: 901 relations, 6879 pages stored; 74608 total
pages needed
DETAIL: allocated FSM size: 1000 relations + 20000 pages = 178 kB
shared memory.
VACUUM

On the "INFO" line, "901 relations" signifies that a total of 901
tables currently exist across all databases on the server.

In the "DETAIL" line, FSM is an acronym for Free Space Map. This line
shows that space has been allocated for a maximum of 1000 tables and
20000 pages for all postgresql databases on the server.

Vacuum of template1 Database
The reason for vacuuming template1 is that vacuum also resets the transaction ID number
and prevents what is called "transaction ID wraparound". From what I can understand of
this occurrence, all postgres db transactions are assigned an ID (a number). If the
transaction ID number gets too big, it will "wraparound" to some smaller number
possibly overwriting old transaction information with a subsequent loss of data. This can
be expected to occur at sites (such as NWRFC) with huge numbers of daily database
transactions. Note: This occurrence has nothing to do with filling up disk space so
the monitors on disk space will not catch this problem.

postgres generates warning messages in the postgres log when transaction ID wraparound
is imminent. These messages were seen at NWRFC. We have also seen them here at
OHD. Until the vacuum of template1 is occurring regularly, the only way to watch for
transaction ID wraparound is to monitor the postgres logs.

Beginning in Version 8.2, the transaction ID number is stored for each table instead of for
each database.

Transaction ID
DELETE simply marks the tuple in the page as deleted (not visible) to
transactions with transaction ids larger than the DELETE transaction's
id (assuming it commits). So, once all transactions with transaction
ids lower than that DELETE transaction's id commit, the tuple can be
considered dead since nothing can see it anymore. VACUUM looks for
these dead tuples and adds them to the FSM. INSERTs and UPDATEs (and
COPYs) then look to the free space map for a dead tuple first when
space is needed for a new tuple before allocating space in hopes of
avoiding that space allocation by reusing the dead tuple's space.

Running vacuum at AWIPS Sites
The SwEG's policy on running vacuum is to have the postgres cron submit vacuum runs
for each of the standard AWIPS databases. This will prevent the possibility of multiple
vacuum runs executing at the same time which can cause a slowdown in the server. A
vacuum/analyze of the IHFS db has been scheduled to be submitted from the postgres
cron every 4 hours.

Vacuum Script

The following script is submitted via the postgres cron on dx1 at all AWIPS sites to
vacuum the PostgreSQL databases. The filename is /awips/ops/bin/vacuum_pgdb.

#!/bin/bash

NAME
vacuum_pgdb - Vacuum a postgres database

SYNOPSIS
vacuum_db -d db_name [-z]

DESCRIPTION
This script calls the vacuumdb executable to vacuum AWIPS
databases.
It will normally be run from the "postgres admin user" cron.

The command line of the script is

vacuum_db -d db_name,... [-z]

db_name = the name of the database to be vacuumed

or
vacuum_db -a -x db_name,... [-z]

db_name = the name of the database to exclude from the vacuum

The "-z" option is optional. If it appears on the command line,
then the vacuum will also perform an "analyze".

This script logs output to /data/logs/fxa/vacuum_${DBNAME}_MMDD.

HISTORY
4/08/2005 Original Version (Paul Tilles)
4/19/2005 Updates for environment vars, command line options

USAGE="Usage: $0 -a|-d dbname_list [-x exclude_list] [-z]"
FXA_HOME=${FXA_HOME:-~fxa}
unset ANALYZE
VACUUM="vacuum"
VACUUM_ALL=0
unset DBNAME_ARRAY
unset EXCLUDE_ARRAY

Read the command line args
while getopts :ad:x:z opt ; do
 case $opt in
 a) VACUUM_ALL=1
 ;;
 d) DBNAME_ARRAY=(${OPTARG//,/ })
 ;;
 x) EXCLUDE_ARRAY=(${OPTARG//,/ })
 ;;
 z) ANALYZE="--analyze"

 VACUUM="vacuum analyze"
 ;;
 *) echo $USAGE;
 exit 1
 ;;
 esac
done

if [-z "${DBNAME_ARRAY[*]}" -a $VACUUM_ALL -eq 0] ; then
 echo $USAGE
 exit 1
fi

Source the AWIPS and PostgreSQL environments
. $FXA_HOME/readenv.sh
. postgresenv.sh

PSQL_BIN_DIR=$PG_INSTALL/bin

if [$VACUUM_ALL -ne 0] ; then
 DBNAME_ARRAY=($($PG_INSTALL/bin/psql -U postgres --list --tuples-
only \
 | while read _DBNAME _JUNK; do \
 if ["$_DBNAME" != "template0" -a "$_DBNAME" != "template1"] ;
then \
 echo $_DBNAME; fi; done))
fi

for EXCLUDE in ${EXCLUDE_ARRAY[*]} ; do
 let "I = 0"
 while [! -z "${DBNAME_ARRAY[$I]}"] ; do
 if ["${DBNAME_ARRAY[$I]}" = "$EXCLUDE"] ; then
 unset DBNAME_ARRAY[$I]
 fi
 let "I = $I + 1"
 done
done

if [-z "${DBNAME_ARRAY[*]}"] ; then
 echo "Nothing to vacuum!" > /dev/stderr
 exit 1
fi

Run vacuumdb
Write database name, begin time and end time to log

EXIT=0
for DBNAME in ${DBNAME_ARRAY[*]} ; do

 LOGFILE=$LOG_DIR/vacuum_${DBNAME}_$(date -u +%m%d_%H%M)

We should not need to do this, all databases should be owned by
pguser
 USERNAME=$($PG_INSTALL/bin/psql -U postgres --list --tuples-only |
\
 while read _DBNAME _DELIM _USERNAME _JUNK ; do \

 if ["$_DBNAME" = "$DBNAME"] ; then echo $_USERNAME; fi; \
 done)

 echo $(date +"%b %d %T") BEGIN $VACUUM $DBNAME as $USERNAME >>
$LOGFILE

 $PSQL_BIN_DIR/vacuumdb -v $ANALYZE -U $USERNAME $DBNAME >> $LOGFILE
2>&1
 RETURN=$?

 if [$RETURN -ne 0] ; then
 EXIT=$RETURN
 fi

 DTZ=`date -u +%T`
 echo $(date +"%b %d %T") END $VACUUM $DBNAME EXIT_CODE=$RETURN >>
$LOGFILE

done

exit $EXIT

A log file is generated by each vacuum run. Logs generated by the execution of the
/awips/ops/bin/vacuum_pgdb script are written to the $LOG_DIR directory which
normally points to the /data/logs/fxa directory. These log files will be monitored to
watch for problems such as a slow increase in size of the db over time. We also hope to
glean information from the logs which will be used to tweak the configuration
parameters.

Submitting from cron
The vacuum_pgdb script is submitted via the cron on dx1. The cron file is located in

 /etc/ha.d/cron.d/dx1cron

Other Info
The following site offers an interesting discussion concerning vacuuming:

http://pgsqld.active-venture.com/routine-vacuuming.html

Analyzing Vacuum Output
Q: I got the following output at the end of my vacuum :

INFO: free space map: 260 relations, 20604 pages stored; 52512 total pages needed
DETAIL: Allocated FSM size; 1000 relations + 20000 pages = 178 kB shared memory

This output is from a Version 7.4.x "vacuum all". How should this output be interpreted?

A: It appears your FSM is a bit too small. While it can track all of the relations you have,
it's not able to store information about all of the pages that contain free space. As a
result, there is probably a lot of fragmented data (spaces marked as free, but the tuples

aren't being re-used because the FSM isn't tracking them). I'd increase the amount of free
pages you are tracking with the FSM.

Q: I using Postgresql 8.1 and during vacuum at night time, I am getting the following log:

 number of page slots needed (2520048) exceeds max_fsm_pages (356656)

Do I need to increase max_fsm_pages to 2520048? Does it have any bad affect?

A: You don't *have* to do it. The consequences of not doing it are:

1) your server will not know all of the pages in the files holding your database that there
are empty slots available for use.
2) because of that lack of knowledge, it may then allocate new pages to hold your data,
causing potentially more bloat, and the need for even more FSM pages.
3) Allocating new pages usually costs more than just filling in space on existing page, so
your system slows down.

If I were you, I'd set the FSM pages to double what your current need is, run vacuum
again, and you should be good for a while. It will unfortunately, require a restart of your
postgres server.

Vacuum and Open Transactions
Q: If a java program connects to the DB and does "begin;" and then internally does a
"sleep 6 days", does that cause any issues other than eating a connection to the database?

A: In recent versions of PG, no. Before about 8.3 it was a Really Bad Idea
because the open transaction would prevent VACUUM from reclaiming storage.

It's *still* a Really Bad Idea to begin a transaction, do something, and then sleep 6 days.
But "BEGIN" without any following commands has been fixed to be harmless, mainly
because there are so many badly designed clients that do exactly that.

CHPS Database
On Nov 5, 2010, NWRFC reported a problem with vacuuming the CHPS db. Because of
an event, the db had not been vacuumed for 3 days. When they attempted to do a
“vacuum –full” on the db, it took many hours and did not finish. The vacuum was
“stuck” on the time series table. This is a very large table with a TOAST table associated
with it. The solution to the problem was to run CLUSTER on the primary key index of
the table followed by a “vacuum full”. The CLUSTER on the index took approx 1 hour.
The “vacuum full” took approx 10 minutes. CHPS is running V 8.2.x.
To run cluster,

psql db_name
cluster index_name on table_name;

The cluster command reorders the records in the table according to the specified index.

