
 ecpg - PostgreSQL Embedded SQL/C Precompiler

General
- PostgreSQL Version 7.4.8 includes ecpg version 3.1.1
- PostgreSQL Version 8.2.5 includes ecpg version 4.2.1
- supports full ANSI-SQL standard
- ecpg does some SQL syntax checking - some statements which show no syntax
 problems on precompile/compile, may yield a syntax error when executed
- “ecpg –version” command displays version info
- ecpg is case sensitive
- uses “EXEC SQL ...” syntax
- character strings in SQL statements are denoted by single quotes (‘)
 - Infx allowed single or double quotes

- character strings in C statements still use double quotes (“)
- normal file extension for ecpg file is .pgc
- Momjian, Douglas and Schonig books all have short chapters on ecpg

Informix Compatibility Mode
(" -C INFORMIX" option for ecpg)
 - allows many of the datetime related functions and data types to be used
 - note that function dttofmtasc does not work and must be replaced by
 dttoasc
 - currently used by HSEB software
 - in the future, will not use Informix Compatibility Mode

AUTO_COMMIT Option
(" -t " option for ecpg)
- if "-t" option (auto_commit = on) is not specified and a SELECT statement fails, all
subsequent SELECT statements will fail
- EXEC SQL INSERT example below needs to be followed by COMMIT

- if the A-t@ option is specified, then COMMIT is not needed
- same for UPDATE and DELETE

Opening and Closing a Database

In ecpg, to open a connection to a database

EXEC SQL CONNECT TO dbname;

To close the connection

EXEC SQL DISCONNECT dbname;

If the application exits without first closing the database connection, the following
message will be written to the postgres log:

 unexpected EOF on client connection

Error Codes
- ecpg has sqlca structure containing error return code
- error codes in sqlca.sqlcode are different bet Infx and psql
 - ecpg returns error code = 0 if there is no error and error code = -400
 for most errors
 - ecpg does not return error code -239 for violation of unique constraint
 - ecpg doc recommends dropping use of slqca.sqlcode field and replacing
 it with sqlca.sqlstate (5 char string)
 - sqlca.sqlstate='00000' signifies no error
- sqlca structure does not contain an ISAM error - ecpg has no concept of an ISAM error
- in Infx, sqlca.sqlerrd[1] contains the table defined serial primary key, psql does not

return it
 - in psql, you can get the current serial value, run it through the nextval function

 and then insert a new record

Cursors
Infx has EXEC SQL CLOSE and EXEC SQL FREE statements to close a cursor and free
its resources. psql has the EXEC SQL CLOSE statement which according to the doc
closes the cursor and frees all resources related to it. psql has no FREE statement.

Informix allows a cursor to be declared and opened in one routine and fetched in a
different routine. PostgreSQL does not allow this. A "cursor undefined" error is
generated by the precompiler in PostgreSQL.

Infx allows reuse of a cursor within a loop without closing it. Executing the EXEC SQL
OPEN, closes the previous use of the cursor AND then reopens it. In psql, the cursor
must be closed before reusing in a loop.

Text Field
The variable to fetch (or select) into must be of type char * and the variable must be set
to NULL initially so that memory for the contents can be allocated. If you do not set the
variable to NULL, you will overwrite random areas of memory.

Descriptor Area
- Infx: EXEC SQL DESCRIBE sid INTO sqlda;
 - sid is the prepared statement "SELECT * FROM tablename;"
 - the statement is never executed
 - the descriptor area is used to get at the field descriptions

- psql has not implemented a DESCRIBE statement
 - need to execute a FETCH for a record into the descriptor
 area and then access the individual fields of the record
 - does not work for empty tables
 - there is email chatter about implementing a DESCRIBE statement in the

 future

PostgreSQL Key Words
The following is a list of column and table names from the IHFS db which are postgres or
SQL standard "key words":

action
admin
date
level
location
name
notify
number
owner
source
state
storage
type
value

Using these key words in SQL statements may cause problems as noted below.

Informix esql statements using the key word "value" such as
 EXEC SQL SELECT value FROM …

 will generate a syntax error and must be rewritten as

 EXEC SQL SELECT "value" FROM …

Note that if the above statement is written using single quotes as in

 EXEC SQL SELECT 'value' FROM …

there is no syntax error. However, a runtime error of -206 is generated.

Note also that if "value" is used in a prepared statement, the double quotes (") are not
necessary.

The statement

 EXEC SQL SELECT county INTO :county FROM Location …

compiles and executes properly without quoting the key word "location".

The statement

 EXEC SQL SELECT state INTO :state FROM Location …

compiles and executes properly without quoting the key words "state" and "location".

The statement

 EXEC SQL SELECT focalpoint INTO :fp FROM Admin …

compiles and executes properly without quoting the key word "admin".

The statement

 EXEC SQL SELECT level INTO :level FROM RiverStat …

compiles and executes properly without quoting the key word "level".

According to the documentation, quoting a key word makes it case-sensitive. Unquoted
key words in postgres are folded into lower case. Note that folding key words into lower
case is against the SQL standard. Appendix C of the postgres online documentation
contains the full list of key words.

Other differences between esqlc and ecpg
- esqlc is a script which does both precompile and compile
- ecpg is an executable which does a precompile only
 - must explicitly execute gcc to compile code

- see Momjian p 195 for sample statements for compiling code
- in AWIPS OB6, the executable is located in the /usr/local/pgsql/.bin dir
- NOTE: AWIPS will be using gcc version 3.2.3 in OB6 and version 3.4.3 in OB7

- esql allows smallint in DECLARE section
- ecpg does not allow use of smallint in DECLARE section - must use short

- ecpg 4.2.1 (postgres V8.2.x) has "WHERE CURRENT OF … " clause for cursors

- esql has rsetnull/risnull routines
- ecpg (V7.4) has ECPGset_informix_null/ECPGis_informix_null routines
- ecpg (V8.2.x) replaced ECPGset_informix_null/ECPGis_informix_null routines with
 rsetnull/risnull

- esql has a datatype called "string" which automatically strips off trailing blanks and
 adds a NULL terminator - used by generated code for char and varchar
- ecpg has no such datatype

- ecpg: if an application exits without first closing the database connection, the following

 message will be written to the postgres log:

 unexpected EOF on client connection

- esql: if an application exits without first closing the database connection, no error is
 generated

esql Function Name ecpg Function Name
------------------------ -------------------------
dtcurrent PGTYPEStimestamp_current
dtcvasc PGTYPES_from_asc

Code Fragments

The following code fragments illustrate other differences between ecpg and esql/c:

The following code snippet illustrates a bug in ecpg 3.1.1. In the first snippet, an SQL
statement is declared for a cursor. The subsequent OPEN statement causes the app to
core dump. In the second snippet, a PREPARE/DECLARE/OPEN using the same SQL
statement succeeds.

/--- DECLARE/OPEN - fails ---------------------------/

EXEC SQL DECLARE pp24_cursor CURSOR WITH HOLD FOR
 select lid, ts, dur, obstime, "value", pe, extremum
 from rawpp
 where (pe = 'PP' and
 (obstime between :datetime_in and :datetime_out) and
 "value" >= 0.0 and
 (dur = :dur1 or dur = :dur2) and
 ts like 'R%');

EXEC SQL OPEN pp24_cursor; /* core dump at this line */

 / --- PREPARE/DECLARE/OPEN - works ------------/

strcpy(ts_str,"R%");

sprintf(query_stmt,"select lid, ts, dur, obstime, value, pe, extremum
from rawpp");

sprintf(query_stmt,"%s where (value >= 0.0 and (obstime between '%s'
and '%s')",query_stmt, datetime_in,datetime_out);

sprintf(query_stmt,"%s and (dur=%s or dur=%s) and ts like '%s')",
query_stmt,dur1,dur2,ts_str);

EXEC SQL PREPARE pp_q from :query_stmt;
EXEC SQL DECLARE pp24_cursor CURSOR WITH HOLD FOR pp_q;
EXEC SQL OPEN pp24_cursor;

--\

The following code

EXEC SQL UPDATE Lightning
 set (x_hgrid, y_hgrid, obstime, no_of_strike)
 = (:db_x_hgrid, :db_y_hgrid, :db_obstime, :db_no_strike)
 where ;

precompiles, compiles and links without error or warning. However, when an attempt is
made to execute, a syntax error is written to the postgres log. The code should be
rewritten as

EXEC SQL UPDATE Lightning
 SET x_hgrid = :db_x_hgrid,
 y_hgrid = :db_y_hgrid,
 .
 .
 .

The following code caused compiler errors related to the use of
variable names "add" and "user":

$char rrfc[9];
$char user[32];
$char add[150];
$char fname[30];

The above was fixed by using the "BEGIN DECLARE" and "END DECLARE"
notation:

EXEC SQL BEGIN DECLARE SECTION;
char rrfc[9];
char user[32];
char add[150];
char fname[30];
EXEC SQL END DECLARE SECTION;

"user" and "add" appear in the extensive list of PostgreSQL reserved
words found in Appendix C of the documentation.

Following code worked properly in Informix/esql

sprintf(sql,"DELETE FROM …"); -- string variable with name "sql"
EXEC SQL EXECUTE IMMEDIATE :sql;

In PostgreSQL, above code results in a sqlstate = 02000 error. This is because "sql" is a

reserved word. Changing the above to

sprintf(sql_stmt,"DELETE FROM …");
EXEC SQL EXECUTE IMMEDIATE :sql_stmt;

results in statements executing without error.

