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1.  Introduction and Objectives

The primary motivation for this study was to evaluate the potential applicability of various forecast accuracy measures as a program-level performance measure for the Advanced Hydrologic Prediction Service (AHPS).  At the time of preparation, the only AHPS program performance measure was number of river forecast points at which AHPS was implemented.  Clear need existed for the incorporation of additional performance measures.  Feedback from users, scientists, managers, and administrators obtained through interviews and reviews of program materials indicated strong interest in having one measure address the accuracy of the forecast information generated within AHPS.
The AHPS forecast products include both deterministic and probabilistic predictions.  While accuracy measures for deterministic forecasts such as probability of detection and false alarm rate are well established and generally understood by the public, accuracy measures for probabilistic forecasts are more complex.  Probabilistic forecast verification is relatively new within the hydrologic communities but various techniques have been developed and applied within the meteorological and numerical weather prediction communities (see, e.g. Wilks, 1995).  An initial study conducted by Franz and Sorooshian (2002) for the National Weather Service (NWS) identified and evaluated several procedures that could be applied to detailed, technical verification of the ensemble streamflow predictions within AHPS.
It is important, however, to make a distinction between performance measures at the program and science levels.  At the scientific level, a high degree of technical knowledge can be assumed enabling the use of complex measures suitable for peer-reviewed publications.  While such measures allow the most comprehensive evaluation of forecast performance and technical improvement, they may be difficult to communicate to an audience with less scientific background.  A program-level measure should be constructed in such a way that it has value and can be presented to audiences with varying technical experience.  This can be challenging, as it is still desirable to maintain scientific validity in the measure to help ensure the integrity of the program.  Application at the program level is also enhanced if the measure can be applied uniformly over all the hydrologic regimes covered by the program.  This study builds extensively on the previous work of Franz and Sorooshian (2002), revisiting potential measures with specific attention to their application at the program level.
The assessment of the measures was conducted with several specific objectives in mind.  Probabilistic measures were first reviewed to identify the best compromises between illustration of key programmatic capabilities, scientific merit, and ease of presentation.  Existing operational data were then used to perform sample computations of selected measures.  These tests helped identify what measures could realistically be computed using operational data, demonstrate what forecast outputs and verification data need to be collected and archived regularly, and provide initial indication of how likely the measures were to suggest program success and improvement.  The review of potential measures is presented in section 2.  The operational data used to evaluate the measures is described in section 3 and the results of the evaluations are presented in section 4.  Implications of these results on the choice of program performance measures are then discussed in section 5 and corresponding recommendations for potential performance measures and necessary data collection and archival are given in section 6.
2.  Background on Probabilistic Forecast Verification
Detailed descriptions of existing probabilistic forecast verification measures have been presented in several references (Wilks, 1995; Hamill et al., 2000; Franz and Sorooshian, 2002; Hartmann et al., 2002).  The goal of the presentation here is to focus on the potential use of the measures at a programmatic level.  Sufficient technical details will be provided to keep this document largely self-contained.  The background discussion will progress in order of increasing complexity of the measures.
The majority of existing Government Performance Requirement Act (GPRA) accuracy performance metrics are based on deterministic verification measures such as probability of detection (frequently expressed as accuracy) and false alarm rate.  These measures, however, cannot be applied directly to probabilistic forecasts where it is difficult to say whether a single forecast is right or wrong.  Deterministic measures will remain important to AHPS to the extent that AHPS forecasts continue to have deterministic elements.
2.1.  Categorical Forecasts

The simplest probabilistic accuracy measure is constructed by transforming a probabilistic forecast into a categorical (e.g. flood/no flood) forecast through the selection of a probability threshold.  Once the forecasts have been categorized, probability of detection and false alarm rate can again be computed.  This was the basis for initial discussions of a measure quantifying how often flooding occurred when forecast with a probability exceeding a specified level.  As considered, the measure required specification of the probability threshold (e.g., 50%, 85%), event (e.g., flooding, major flooding), and forecast period (e.g., 30 day, 60 day, etc.).
The primary advantage of this measure is its ease of presentation to a non-technical audience.  The measure can be expressed simply as percent accuracy as for deterministic measures.  The measure also possesses a scientific basis related to overall evaluation of probabilistic forecasts.  By evaluating the probability of detection and false alarm rate for a series of threshold probabilities and plotting the probability of detection against the false alarm rate it is possible to construct what is termed a relative operating characteristics (ROC) curve (e.g. Mason and Graham, 1999).  The overall skill of the forecast is then related to the area under the curve.  These curves are currently used as a component of forecast verification at the European Centre for Medium-Range Weather Forecasts.
There are, however, several significant weaknesses of such a basic measure.  First, if only one probability threshold is used, the measure does not completely address the probabilistic nature of the forecasts.  A forecast with a probability just outside the selected threshold is awarded or penalized the same as a forecast with a high degree of certainty.  It is also not straightforward to identify a perfect score.  If a threshold probability of 50% is selected for forecasts of flooding, the probability of detection indicating perfect forecasts should not be 100%.  Forecasts of near 50% probability should verify only 50% of the time and a perfect score should be somewhere between 50 and 100%.  The perfect score can be directly computed but this concept would be difficult to present in programmatic briefings.  Finally, the choice of a probability threshold is arbitrary and could complicate explanation of the measure.  Discussions with several managers and administrators indicated that the technical weakness of the measure combined with possible confusion surrounding specification of multiple attributes made the measure undesirable for use in the AHPS program.
2.2.  Brier Score

An improved probabilistic accuracy performance measure can be based on the Brier score (Brier, 1950; Wilks, 1995).  While still limited to characterizing two categories or whether or not a specific event occurs, the Brier score fully accounts for probabilistic forecasts.  The Brier score essentially preserves the simplicity of a probability of detection measure while eliminating the arbitrary threshold probability.  The score is formally defined as:
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where pi is the forecast probability of the ith event and oi = 1 if the event occurred and oi = 2 if it does not.  As such the score is essentially a mean square error where the error is related to the difference between the forecast probability and the observed frequency.  The Brier score ranges between 0 for perfect forecasts and 1 for perfectly bad forecasts.  A Brier skill score can also be computed relative to the Brier score of a reference forecast (BSref):

BSS = (BSref – BS) / BSref.
(2)

The skill score gives the relative improvement of the actual forecast over the reference forecast.  A typical reference forecast would be based on climatology.  The Brier score can also be decomposed to identify the relative effects of reliability, resolution, and uncertainty (Murphy, 1973).
Where a yes/no type measure characterizing either flooding or low flows is of value, the Brier score can be simply presented while maintaining scientific integrity, making it of potential interest as a programmatic performance measure.  An interview with Steven Gallagher, the Deputy Chief Financial Officer of the National Weather Service, revealed significant concerns with the programmatic use of any measure based on a skill score where the method for arriving at the score requires explanation.  However since the Brier score always falls between 0 and 1, it is possible to express the measure simply as a percent accuracy (by subtracting the Brier score from 1) without formally referring to the name Brier score.  The relationship between the Brier score and traditional accuracy can be illustrated with simple examples.  If flooding is forecast with perfect certainty (probability = 1) on four occasions and flooding occurs in three of those cases, the resulting Brier score would be 0.25 in agreement with an expected 75% accuracy.  The Brier score thus reduces to probability of detection for deterministic cases.  If each of the four forecasts were for 90% probability, the Brier score would then be 0.21 implying 89% accuracy.  While the relationship is not as intuitive, the non-exact probabilities are assessed in a systematic way.  One additional example provides a valuable reference.  If a forecast probability of 50% is always assumed, the Brier score will be 0.25.  Poorer Brier scores would then suggest that the corresponding forecasts add little value.  
The primary weakness of the Brier score is that, by being limited to the occurrence of a specific event such as flooding, only a small fraction of the forecasts issued can be meaningfully evaluated.  A large number of the probabilistic forecasts for river stage or streamflow of interest for water resource management would be essentially ignored.  This concern was voiced in particular by Steven Gallagher who favored a measure that better addressed the overall distribution of the river forecasts.  Because of the low frequency of flooding events, it could be very difficult to compile a dataset sufficient for complete evaluation of the Brier score.
2.3.  Rank Probability Score

The rank probability score and rank probability skill score (Epstein, 1969; Wilks, 1995) directly address this weakness but at the potential cost of added complexity.  Rather than being limited to the occurrence or non-occurrence of an event, the rank probability score evaluates the accuracy of probabilistic forecasts relative to an arbitrary number of categories.  Scores are worse when increased probability is assigned to categories with increased distance from the category corresponding to the observation.  For a single forecast with J categories, the rank probability score (RPS) is given by:
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(3)
where pj is the probability assigned to the jth category.  To address the multiple categories, the squared errors are computed with respect to cumulative probabilities.  For multiple forecasts, the RPS is computed as the average of the RPS for each forecast.  A perfect forecast has an RPS = 0.  Imperfect forecasts have positive RPS and the maximum value is one less than the number of categories.  As with the Brier skill score a rank probability skill score can be computed relative to reference forecast to provide the relative improvement of the new forecast.  The steps required for application of the rank probability score and rank probability skill score are illustrated in Franz and Sorooshian (2002, hereafter FS02).  For the case of two categories, the rank probability score reduces to the Brier score.
While the RPS is ideally suited for application as a scientific performance measure as argued by FS02, several factors complicate its use as a programmatic measure.  Explanation of the score to someone with a non-technical background would be challenging if required.  It might still be possible to map the score to a single percent accuracy figure as for the Brier score but both the computation and interpretation are less direct.  The computation is complicated by the fact that the score is not confined to a fixed interval.  While the categories could be fixed for all computations or the scores normalized by the maximum value to enable comparison of different points, it is difficult to physically interpret what such a score represents.  Any relation to accuracy is strongly influenced by the selection (number and relative width) of the categories.  Franz and Sorooshian state that the RPS alone is difficult to interpret and is most useful for comparison of results at different locations.  Such a comparison over time has clear value for evaluating advances in the forecasts and related science, but having a tangible meaning for the score is also important for a programmatic measure.  
Presentation as a skill score has more explicit meaning, but expression in terms of an improvement over some reference such as climatology has its own shortcomings.  The concept of improvement over climatology can appear less tangible than percent accuracy and selection of a meaningful goal is less direct.  The challenge of effectively communicating the meaning of both the reference and score is likely a major contributor to Steven Gallagher’s reluctance to use a skill score.  Moreover, the climatology or other reference forecast must first be computed and this frequently requires extensive historical data that might not be readily available.  Finally, there is the potential for the appropriate reference or climatology to change over time.
Additional accuracy measures addressing discrimination and reliability were advocated by FS02.  Presentation of these measures was best accomplished graphically.  While of scientific importance, these measures do not seem appropriate at the programmatic level.  Hartmann et al. (2002) also concluded that the diagrams are “probably too complex to interpret for all but the large water management agencies and other groups staffed with specialists.”
3.  Data

Further evaluation of the suitability of potential forecast accuracy measures for AHPS is best achieved through application to actual data.  To accomplish this, examples of operational forecast output and corresponding verification data are required.  Two different sample data sets were used to test possible deterministic and probabilistic accuracy measures.
3.1.  National Weather Service Verification Database

An initial evaluation of deterministic forecast accuracy measures was performed using the existing National Weather Service Verification Database.  The database is accessed via a secure web interface at https://verification.nws.noaa.gov.  The user id and password are available to NWS employees.  

The hydrology portion of the database supports verification of river forecasts out to 3 days and flash floods.  For river forecasts, statistics on mean absolute error, root mean square error, and mean algebraic error of forecast stage are generated interactively for a selected set of verification sites.  Data are available for 177 sites covering every river forecast center (25 in Alaska) in monthly intervals from April 2001.  The data extend to approximately two months before the current date.  At the time of the experiments, data were available through July 2003.  The data available for flash flood verification are more extensive in terms of both spatial and temporal extent.
The user can generate statistics for any subset of the available verification sites for any range of months within the database.  The results can be stratified by river response period (fast: < 24 hours, medium: 24-60 hours, or slow: > 60 hours), forecast period (time at which the forecast is valid), and whether the river stage is above or below flood stage.  The data are obtained in summary tables or a comma delimited format suitable for import into spreadsheets.  
All computations are made within the web interface upon submission of a request.  Additional data such as individual stage observations or variability about the reported mean values are not available through the existing interface.  Recovery of these values would require either direct access to the database or extension of the online computation capabilities.  These limitations have significant implications for practical use of the existing system for computation of AHPS program performance measures as will be described below in Section 5.
The tests performed in this study were limited to verification sites from the Missouri Basin, North Central, and Ohio River Forecast Centers.  Edwin Welles of the Office of Hydrologic Development contacted each of these forecast centers to determine at what sites the basic AHPS capabilities had been previously implemented.  This enabled the statistics to be 
further stratified into AHPS and non-AHPS categories.  A listing of the verification sites and [image: image3.wmf]Below Flood Stage Forecast  Mean Absolute Error
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their AHPS status is shown in Table 1.
3.2.  Ensemble Forecast Verification Data

A small sample of the Ensemble Streamflow Prediction (ESP) system forecasts and corresponding verification observations was used to evaluate application of the probabilistic Brier score.  This dataset was the same as that used to conduct the study of Franz and Sorooshian (2002).  All the original files supplied by the NWS were obtained from Kristie Franz (franzk@uci.edu) now with the University of California, Irvine.
As described in detail by FS02, the data corresponded to 43 forecast points from the Ohio River Forecast Center.  Data consisted of the forecast exceedance probabilities and individual ESP trace values, corresponding river observations, and, for some forecast points, limited historical observations.  Separate forecasts were provided for mean weekly stage and maximum monthly stage (30-day interval) over a period from December 12, 2001 to March 24, 2002.  Both forecast types were issued with a 6-day lead time.  An average of 11 forecasts of each type was provided for each point.  The data represented the most complete set of forecast output, corresponding observations, and historical data that could be obtained at the time of the study.
The observed forecast stages were provided hourly on average but in several cases data were missing within the forecast intervals.  In particular, the observations did not extend to the end of the valid period of the forecasts causing the last weekly forecasts and the last five monthly forecasts to be excluded.  Missing observations within other forecast intervals forced FS02 to develop an elaborate set of rules for treating these gaps.  The same rules as described on page 9 of their report were applied here to preserve consistency of the results.
The historical observations were not applied in this study, but the existing data had to be supplemented with records of the flood stage at each forecast point.  These values were obtained from the individual AHPS web pages for each point.  Flood stage values could not be readily obtained for three of the points and one additional point lacked valid observations leaving 39 points available for further analyses.  The forecast points used and extracted flood stage values are listed in Table 2.
4.  Results

The forecast data sets were used to evaluate simple deterministic river forecast accuracy measures and application of the Brier score to probabilistic forecasts of river flooding.  Details of each experiment and the corresponding results are included in this section.
4.1.  Deterministic Evaluations

Deterministic verification measures computed through the NWS hydrology verification website were evaluated first.  These tests were driven primarily by the desire to learn whether a simple assessment of the current accuracy of AHPS forecasts could be constructed rapidly from existing data.  Review of material prepared in support of the NOAA 3rd quarter 2003 review revealed strong immediate interest in having a measure to quantify any improvements in forecast accuracy resulting from AHPS.  Initial questions surrounded whether existing verification activities could be performed separately for AHPS and non-AHPS forecast points.  The NWS verification database provided the most immediate means of attempting such an assessment.
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Computations were performed for the combination of verification points from the Missouri Basin River Forecast Center (MBRFC), North Central RFC (NCRFC), and Ohio RFC (OHRFC).  Though there were no AHPS points in the MBRFC subset, this combination was used to provide a comparable number of AHPS (19) and non-AHPS (7) points.  Statistics were first computed separately for day 1, day 2, and day 3 forecasts, for fast, medium, and slow response rivers, and for conditions corresponding to stage above and below flood stage.  It is desirable to keep the statistics separate for each of the available categories to the extent allowed by the sample size.  This is because of the different physical processes governing the different conditions and the potential for different contributions to the forecast error.  Preliminary results from other deterministic forecast evaluations performed by Edwin Welles (personal communication) clearly showed different sources for the dominant errors under high- and low-flow conditions.
The corresponding statistics for mean absolute error for the below flood stage forecasts are summarized in Figure 1a.  The results suggest improved forecast accuracy for the AHPS points over the non-AHPS points for the day-1 and day-2 forecasts for fast and medium response rivers.  The AHPS forecasts have poorer accuracy, however, for the slow response rivers and all the day-3 forecasts.  The statistics for root mean squared error (RMSE) are shown in Figure 1b.  For RMSE, the AHPS forecasts also show apparent improved accuracy for fast and medium response rivers on day 3, but the forecasts still appear poorer for slow response rivers on all days.  The number of forecasts in each category is shown in Figure 1c to be generally similar for the AHPS and non-AHPS points.  Similar statistics are not shown for the above flood stage forecasts because there were too few cases for the individual fast, medium, and slow categories (< 30 fast and slow cases for the non-AHPS points).
To enable an assessment of the forecasts corresponding to above flood stage observations, statistics were next examined for the combination of the fast, medium, and slow river responses.  The results are summarized in Figure 2.  While the mean absolute error for below flood stage observations is roughly similar for AHPS and non-AHPS points (the improvements for fast and medium response rivers are balanced by the poorer results for slow response rivers), the AHPS forecasts appear notably better for the above flood stage forecasts.  The results reflect 38%, 41%, and 48% reduction in mean absolute error for the AHPS points for the day-1, day-2, and day-3 above flood stage forecasts, respectively.  The AHPS below flood stage forecasts are improved by 12% and 5% for days 1 and 2 but worsened by 4% for day 3.  Relative to RMSE, the AHPS forecasts appear improved for both above and below flood stage forecasts for all periods.
It is not possible with the data currently available through the verification database interface, however, to formally determine if the suggested accuracy improvements are statistically significant.  To do so, the distribution of the individual forecast errors would be required in addition to the mean values.  While such values can clearly be computed from the original data in the verification database, these results are not available via the existing interface.
The results are sensitive to which of the limited number of verification sites are included in the computation.  The apparent large improvement in the AHPS forecasts for above flood stage conditions is highly influenced by small errors for the AHPS points from the NCRFC.  Additional tests were performed for subsets of the points including the combined points from the NCRFC and OHRFC as well as the OHRFC points alone.  This was also done to more directly compare AHPS and non-AHPS forecasts within a common region.  For the combination of the NCRFC and OHRFC data (shown in Figure 3), the mean absolute error results continue to suggest improved accuracy for the AHPS points on all days for both above and below flood stage cases.  The results are less clear, however, based on RMSE and poorer accuracy is indicated for the day-1 above flood stage AHPS forecasts.  For the OHRFC points alone (Figure 4), the results 
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are frequently worse for the AHPS forecasts, particularly for the above flood stage cases.  While these data no longer suggest improved forecast accuracy at AHPS points, it should be emphasized that the number of available points for these subsets is small.  This sensitivity to the small number of samples emphasizes the need for additional studies with more data and detailed computations of statistical significance before improved accuracy is claimed for the AHPS forecasts.

An initial test was performed in support of the long-term goal of assessing changes in the forecast accuracies over time.  The investigation explored whether any change in the accuracy measures could be observed over time.  Preliminary generation of statistics over 3-month intervals revealed a strong seasonal cycle in the statistics and implied that the statistics should be evaluated over periods of at least a year.  With the present limited temporal extent of the database, only 2 year-long periods are available.  Generation of statistics for the two years showed increased errors for the AHPS points in the second year but little significance can be attributed to the data.

All the computations were simplified in the sense that they did not consider the exact date at which points became AHPS points.  The statistics were generated once for the entire period of April 2001 to July 2003 and points that became AHPS points were assumed to be AHPS points throughout.  More detailed computations should treat the sites on a point-by-point basis by individual month as necessary.  Independent compilation of the statistics outside the web interface will be necessary.
4.2.  Probabilistic Evaluations

The small sample of ESP forecasts and corresponding verification data used in the work of FS02 and obtained from Kristie Franz was next used to test application of the Brier score for evaluation of probabilistic forecasts.  In their previous work, FS02 applied the data to computation of a rank probability score, rank probability skill score, and measures of discrimination and reliability.  A large fraction of the data could not be used for these computations due to the lack of needed historical data.  The new computations were undertaken to determine if the computation of the Brier score could be more easily undertaken and the results more readily interpreted for programmatic application.

Application of the Brier score requires selection of a threshold for which the event can be said to occur or not occur.  The event of interest was taken to be the occurrence of flooding and the threshold river stage was defined as the flood stage.  Forecast data were then evaluated based on the forecast probability of either the weekly mean or monthly maximum monthly river stage exceeding flood stage.  While flooding was deemed to be the event of most interest, the measure could also be evaluated for conditions of drought or low flow if a suitable low-flow measure could be constructed with consistency between all points.

The Brier score was computed both overall and on a point-by-point basis for the forecasts of weekly mean and monthly maximum stage.  The resulting scores for the weekly mean stage forecasts are shown in Figure 5.  Because of the low frequency of occurrence of flooding (particularly in the weekly mean) and corresponding low flooding probability typically assigned to forecasts, the Brier scores are extremely good (low).  For all the points combined, a Brier score of 0.00011 implies essentially perfect accuracy.  Of the 343 forecasts evaluated, flooding based on the weekly mean value occurred only once.  While the no-flood forecasts dominate the statistics, it is interesting to note that in the one case where flooding did occur, it was forecast with near 100% certainty.  This further supports the computed accuracy near 100%.
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To reduce the dominance of no-flood cases on the computed scores, a Brier skill score was computed based on a reference forecast that flooding never occurs (probability of flooding is always 0%).  For all the points combined, the no-flooding reference forecast gives a Brier score of 0.0029 resulting in a Brier skill score of 0.96.  The corresponding apparent 96% improvement in forecast accuracy resulting from the use of the actual forecasts is due to the one case of flooding being forecast with near perfect certainty.  

The Brier scores computed from all the forecasts of monthly maximum stage that could be evaluated are shown in Figure 6.  Again the relatively low frequency of flooding events results in generally low Brier scores.  The overall Brier score of 0.048 can be interpreted as saying the forecasts are 95% accurate.  Direct application of a Brier score computed in this manner would be of limited use as a performance measure since the apparent accuracy is misleadingly high and there is little room for future improvement.  Computation of a Brier skill score based on reference forecasts that flooding never occurs, however, better reflects the overall merit of the forecasts.  For the combined points the resulting Brier skill score is 0.17 suggesting that the operational forecasts provide an improvement of only 17% over simple forecasts of no flooding.  
Additional information on the potential value of the forecasts can be obtained considering only those points and forecasts where flooding occurred.  Scores computed in this manner can be interpreted similarly to probability of detection measures.  For the monthly maximum forecasts, there are more instances in which flooding was observed (13 out of 223 forecasts) and examination of the scores for individual points reveals that the Brier scores are poorer (higher) for the sites where flooding was observed.  If only the four sites where flooding occurred at some time during the evaluation period (BBVK2, CARI2, PSNW2, and WLBK2) are considered but scores are computed for all forecasts at these points, there are 13 incidences of flooding in 27 forecasts and the corresponding overall Brier score is 0.29.  If the cases are further limited to only those 13 forecasts where flooding occurred, the results shown in Figure 7 are obtained.  The overall Brier score of 0.54 implies that the forecasts are only 46% effective in predicting flooding when it does occur.  
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While the poor scores are the result of low forecast flooding probabilities, the PSNW2 and overall scores are, in fact, unfairly poor due to a likely measurement error.  The Brier score of 1.0 for site PSNW2 corresponds to a perfectly bad score.  For the two apparent instances of flooding at that location, the forecast flooding probability was 0.  Detailed examination of the stage observations at that site reveals that the conclusion that flooding occurred is based on one questionable measurement.  Half hourly observations for a period of several hours indicate a stage consistently between 2.6 ft and 2.8 ft with one observation in the middle of the period of 
28 ft.  It seems likely that the decimal point was misplaced in this observation.  While no other observed data was examined in this detail, additional quality control procedures may be desirable.  Excluding site PSNW2, the overall Brier score for predictions of flooding when it was observed is 0.46 suggesting an accuracy of 54%.  
The individual forecast probabilities for flooding when it occurred at the other sites are shown in Table 3.  Though flooding was forecast correctly with perfect certainty in one instance, in all the other cases the forecast probabilities did not exceed 38%.  These results demonstrate poor forecast skill at such longer periods and potential dependence on non-AHPS related parameters.  
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5.  Implications for Selection of Performance Measures

5.1.  Deterministic Measures
The results of the deterministic evaluations suggest that basic deterministic performance measures can potentially provide viable near-term information on at least one aspect of the performance of AHPS forecasts.  While the measures clearly do not address probabilistic content, not all forecasts generated within AHPS incorporate probabilistic information.  The 5-day outlooks on the hydrographs provide a deterministic forecast and are one of the required base AHPS capabilities.  The initial estimates of mean absolute error and root mean square error apparently demonstrate an improvement in forecast accuracy at AHPS locations relative to non-AHPS locations.  Such information is potentially valuable for providing immediate support for the positive impact of AHPS.  
The initial evaluations, however, reveal several concerns that need to be addressed for programmatic use of a similar deterministic measure.  A primary issue is how the measure should be characterized.  Expression in terms of mean absolute error or root mean square error is likely too technical for use at the program level.  Characterizing the accuracy in terms of percent improvement over pre-AHPS or non-AHPS values provides meaningful immediate results but is less desirable for continued application over time.  Goals for percentage improvement over pre-AHPS values seem more arbitrary than specific accuracy targets and repeated computations relative to non-AHPS values become less meaningful as the number of non-AHPS points decreases.  Expressing the forecast error as a percentage relative to the observed stage is more direct and understandable, but requires additional data.
The existing NWS verification database and web interface are inadequate for computation of this measure.  First, the interface does not enable access to all the required information.  While the observed stage is required and used to compute the available error statistics, the values cannot be directly accessed to enable further computation of the error as a percentage of the observed stage.  Data required to demonstrate statistical significance of any differences are also currently unavailable.  Second, the amount of data available in the database is limited.  Additional verification sites would potentially enable a more representative assessment of the performance of AHPS.  Consideration of both existing and any added sites, however, should address and avoid the possibility of serial correlation.  Finally, interactive generation of the statistics will prove impractical for regular computation of the statistics.  Application of a deterministic performance measure will require direct access to the database, construction of an enhanced interface, or development of an independent verification system.
It may also be difficult to demonstrate continuous improvement with time for any such measure.  The presence of a strong seasonal cycle in streamflow argues for computation of statistics over intervals of at least a year.  The existing database only supports generation of statistics for two such intervals.  Over short periods, climatological variations in streamflow could easily overwhelm any changes in forecast accuracy.  With a limited number of verification points it is difficult enough to obtain meaningful overall statistics, let alone for shorter time periods.
5.2.  Probabilistic Measures

Application of the Brier score enables one scientifically based, easily communicated assessment of probabilistic forecasts.  The initial results emphasize, however, the importance of defining a reference for the score.  Due to the low frequency of flooding events, the forecasts appear very accurate when directly evaluating all forecasts.  One reference considered was a perpetual forecast of no flooding.  This reference could also be changed to the climatological likelihood of flooding.  For these choices, the accuracy measure becomes a skill score and is expressed as a percent improvement over the reference forecast.  Interpretive meaning was also enhanced by restricting computation to cases of observed flooding as with a probability of detection measure.  Under these restrictions, the measure can be more simply expressed as percent accuracy.  Avoiding the use of a skill score is desirable for programmatic application and the results based on flooding accuracy when it was observed to occur were the most informative of the other possibilities evaluated.  
The results also suggest that a flooding accuracy measure might be best applied to exceedance forecasts on a time scale of a week or less.  Forecasts of mean stage or flow over time scales of a week are less useful since flooding will be observed in the mean only in the most extreme cases.  Evaluation of exceedance forecasts over periods approaching a month will likely provide poor results because of a current lack of skill over such long periods.  Forecast flooding probabilities were low for all but one of the cases where the maximum monthly stage exceeded flood stage.  The low probabilities also illustrate the difficulty in trying to apply a probability of detection measure based on a probability threshold as presented in section 2.1.  Only one forecast would have qualified had a probability threshold been set higher than 40%.
The primary weakness of a Brier score associated with the occurrence of flooding is clearly illustrated, however, in the very small number of events in the sample data set.  This is the main argument in favor of using the more complex rank probability score that considers multiple categories over the Brier score that addresses only the occurrence or non-occurrence of an event.  The RPS addresses the entire distribution of the forecasts as favored by Steven Gallagher and other managers surveyed.  
Additional comparison of the relative merit of the RPS and Brier score is possible through further interpretation of the sample RPS results presented by FS02.  In their Figure 3, they present the RPS for ten points from the OHRFC sample dataset where they have used 8 non-exceedance probability categories (< 0.05, 0.05-0.10, 0.10-0.25, 0.25-0.5, 0.5-0.75, 0.75-0.90, 0.90-0.95, and > 0.95).  The RPS scores (0.6 to 1.65) can be expressed as an accuracy figure if one considers that the maximum RPS score for 8 categories is 7 and scales the values accordingly (0 = 100% accuracy, 7 = 0% accuracy).  The range of such an accuracy figure for the ten points would then be between approximately 91% and 76%.  The apparent high accuracy is enhanced by the large central categories (0.25-0.50 and 0.50-0.75 non-exceedance).  If these category ranges were defined differently, a different apparent accuracy figure would result.  This illustrates the difficulty in trying to interpret an RPS as an accuracy figure.  The sample application by FS02 also illustrated the difficulty in obtaining adequate historical data to properly define the streamflow categories for a climatological reference.  Out of the 43 sites, a meaningful rank probability skill score could be computed for only 10.  While the RPS can be computed from the forecast traces alone, use of historically based categories can help interpret the score when a skill score is not used.  Both the Brier score and RPS have different strengths and weaknesses for application to a program measure.
Overall, it is apparent that programmatic application of any probabilistic accuracy measure will require a significant new effort to regularly collect and archive the probabilistic forecasts and corresponding observations.  The measures cannot be practically applied to an ongoing programmatic assessment with the data available today.

6.  Recommendations

6.1.  Performance Measures

Based on the initial studies described in this report and the earlier work of FS02, continued research into three forecast accuracy performance measures is recommended.
· Deterministic accuracy of daily river stage forecasts.
· Accuracy of probabilistic weekly exceedance forecasts of river stage or streamflow.
· Flood forecast accuracy.
The first two measures fall under the realm of overall forecasts of river stage or streamflow and can be categorized under the general heading of AHPS river forecast accuracy.  Continued consideration of multiple measures is important at this point because it is difficult to capture all the relevant program characteristics within a single measure.  Moreover, it is hard to know which measures will function best until they can be evaluated with more data.
6.1.1.  AHPS Deterministic River Forecast Accuracy

The first recommended performance measure is a deterministic assessment of the accuracy of the mean daily streamflow forecasts for days 1-3.  This measure is closely related to the tests described above using the existing NWS verification database.  The primary benefits of this measure are that it captures the existing short-term forecasts, is simple to express, and does evaluate the full range (low flow to flooding) of the river forecasts.  It also can be implemented rapidly to provide potential support for the program.  Its primary weakness is that it fails to capture the probabilistic elements of AHPS.
This measure would serve to evaluate the hydrograph predictions currently provided at each AHPS point.  At present these are deterministic forecasts and are the only web product for predictions on the short-term time scales of less than a week.  Inclusion of forecasts within this short term was also recommended for consideration by Steven Gallagher.  While probabilistic forecasts are a primary focus of AHPS, as long as deterministic forecasts remain a program element, it is worthwhile considering a measure of their accuracy.
For use as a programmatic measure, it is best expressed as percentage accuracy computed relative to the observed stream measure.  The measure is expressed here in terms of streamflow for application to the daily mean.  Use of stage was also considered for consistency with the verification database and the format of the published hydrographs but mean daily stage is more poorly defined.  Presentation for days 1-3 represents a compromise over several suggestions.  David Brandon of the Colorado Basin RFC suggested evaluation of the figure for days 1-10.  Forecasts out 5 days are available in the existing AHPS hydrographs and days 1-3 are evaluated in the verification interface.  Steven Gallagher requested a single day in the short term, possibly day 3.  If ultimately presentation of results for only a single day is desired, further tests over a limited range of days will help indicate which day is most useful.  Initial required modifications to existing capabilities would include enhancement of the verification database for expression as a percent accuracy and validation in terms of streamflow.
6.1.2.  AHPS Probabilistic River Forecast Accuracy
The second recommended performance measure is an assessment of the accuracy of the weekly mean streamflow exceedance forecasts based on the rank probability score.  This measure would provide the single most comprehensive evaluation of the forecasts.  Through application of the RPS it is possible to do a probabilistic assessment of the entire distribution of river forecasts.  The measure would be consistent with and evaluate the formal weekly chance of exceedance products on the AHPS web pages.  Both of these factors are important strengths based on input on desirable characteristics provided by Steven Gallagher.  The most significant weakness of the measure is related to whether it can be expressed simply and meaningfully.  This weakness may likely be overshadowed, however, by the other strengths.  Even should the measure prove too complicated for use at the program level, it is highly relevant at the science level.  For use at the science level the measure could be supplemented with discrimination and reliability measures as advocated by FS02.
For programmatic use, it is recommended that the measure be expressed by scaling the raw RPS to a percent accuracy figure as described previously.  Alternate referencing to a climatological forecast is less desirable since it introduces a skill score.  In addition, a raw score can be computed directly from the forecast traces rather than extensive historical data.  For this approach the categories should be chosen consistently between all points and in agreement with the AHPS web products.  The results will be useful as a comparative measure over time and between points but will be hard to interpret as a physical accuracy.  Use of historically based categories, if possible, might help interpretation even without use of a skill score.
Several possible forecast periods have been considered for presentation.  Initial recommendations are tied to the weekly forecasts because of their current availability through the AHPS web pages.  The periods include the week 2 (first forecast period) and week 4 (third forecast period) forecasts.  An evaluation based on a composite of the week 4 through 6 forecasts was also discussed.  Assessment of the longer-term forecast accuracy is desirable for demonstrating programmatic impact but it is unclear where there is currently sufficient skill.  Application to the week 2 forecasts provides better likelihood for initial success.  Final selection should ultimately be dictated by where there is forecast skill and AHPS activities most influence the measure.  Application to shorter-term forecasts should be investigated if the forecasts become available.
Evaluation in terms of the mean streamflow is specified here for consistency with the historical records of the United States Geological Survey (USGS).  The primary long-term quantities available through the USGS web pages include the daily mean and annual peak streamflow.  The measure could also be evaluated in terms of weekly maximum or stage forecasts if there was stronger justification.  Weekly maximum forecasts are perhaps more relevant to flooding predictions and will form the basis of the following flood forecast measure.
6.1.3.  AHPS Flood Forecast Accuracy

The third recommended performance measure is an assessment of the accuracy of predicted flooding in the weekly maximum stage exceedance probability forecasts.  The measure would be computed using the Brier score for the event of river stage exceeding the specified flood stage of each forecast point.  As with the probabilistic river forecast accuracy measure, this measure provides a direct evaluation of the weekly chance of exceedance products.  It can be applied simply and requires no additional historical data.  While application of the Brier score is limited to a single event rather than the entire forecast distribution, this is not necessarily a weakness.  Use of the Brier score should be considered complementary to the RPS rather than an alternative as some users are likely more interested in the occurrence of specific conditions such as flooding than the overall distribution of streamflow.
To avoid influence of the low frequency of flooding events without introduction of a skill score, it is recommended that the measure be computed considering only events where flooding occurred.  In this manner the measure can be interpreted like a probability of detection.  For programmatic application, the Brier score should be interpreted as a percent accuracy as described in the trial application in section 4.2.  Selection of a forecast period for evaluation should closely follow the discussion for the probabilistic river forecast accuracy measure.  Assurance of potential AHPS-related skill is particularly important for a flooding measure where precipitation can have a significant impact.
6.2.  Data Collection/Archival
Perhaps the most significant conclusion of both this study and the previous work by FS02 is that archived records of the forecast and observational data required to compute and evaluate the potential performance measures are critically limited.  The inability to conclusively identify and baseline an accuracy-based performance measure for AHPS at this time is directly related to the shortage of available operational data.  Before making a final selection of the performance measures to be used within the program it is essential to ensure the regular collection and archival of sufficient data to fully evaluate all the potential measures.  Archival should begin as soon as possible since it will take time to accumulate the required data.
The required data can be broken into three categories:

· forecast data,

· verification data, and

· historical data.  
The primary required forecast data are the operational ensemble forecast traces.  All the original forecast values and corresponding probabilities can be regenerated from the forecast traces.  The plots generated and displayed on the web pages are inadequate on their own.  While it is recommended that the forecast traces be regularly archived at each RFC whenever a forecast is produced, further evaluations can be performed using data from a subset of AHPS forecast points.  Any subset should be selected to avoid serial correlation and ensure representative sampling over all possible river classifications such as response time.  Franz and Sorooshian (2002) also identified other additional data that might be archived to facilitate reanalysis studies.
To enable verification of the forecasts, the observations corresponding to the forecasts must also be regularly archived.  The data must be consistent with the forecasts both in terms of measured quantity (e.g., stage or streamflow) and sampling period and strategy (e.g., mean weekly or maximum monthly).  The data must also span the period corresponding to the forecast.  
Finally, historical data are also required to construct streamflow and stage climatologies.  While use of skill scores requiring climatological references may not be desirable for use at the programmatic level, the data can still be used to define categories for the RPS and may facilitate applications at the science level.  As noted for the verification data, the historical data should also be fully consistent with the forecast quantities.
6.3.  Additional Analyses
When sufficient data has been archived, the proposed measures should all be evaluated for common sets of forecast points and time periods.  Analysis with more comprehensive data will better identify which measures are of most value in characterizing the program.  The studies will reveal where the forecasts have potential skill and where there is a good chance of demonstrating improvements through AHPS activities.  It is important to ensure that the measure scores are influenced by factors controlled by AHPS and not parameters such as certain meteorological products that are independent.  The evaluations possible at this time were unable to consider a wide range of forecast lead times or carefully isolate different river conditions.  Ideal measure selection would incorporate parallel computation of the different measures over an extended period of data to illustrate where skill exists and identify possible weaknesses under different conditions.  These steps are important if the measures are to be the primary indicator of success of the AHPS program.  Measures suggesting poor skill will be valuable for internal evaluation of the program and management of science activities, but could reflect unfavorably on the program if presented publicly.  The extended analyses should also serve to define the baseline for any selected performance measures.  
Alternate ways to construct streamflow and stage climatologies should also be explored.  This new activity was also recommended by FS02.  As noted above, the climatologies are still of value even if not directly applied to the computation of skill scores.  Preparing formal climatologies of streamflow distributions requires extensive historical data that might not be readily available at all desired locations.  Identification of extreme, narrow exceedance categories such as the outer 1-2% requires longer historical records.  One alternative to consider would use established relations for flooding flows (Jennings et al., 1994) as applied in threshold runoff estimates (e.g., Reed et al., 2002).  Initial flow distributions could be constructed at sites where adequate data exists.  These distributions could then be mapped to other locations without sufficient data by adjusting the levels for 5-, 10-, and 100-year floods as derived from the equations.  Trials at locations with data will be necessary to determine the potential accuracy of the technique.
7.  Concluding Notes

Several potential forecast accuracy measures were evaluated for application as a program-level performance metric for AHPS.  The relative strengths and weaknesses of the different measures were illustrated but the available archived forecast and verification data were inadequate to fully demonstrate what measures would most favorably reflect on the AHPS program.  Based on the results, recommendations were made for further evaluation of three specific measures through the creation of improved archives of corresponding forecast and verification data.  The more comprehensive analyses should better enable selection of a final measure for inclusion in programmatic presentations.  Final selection should also be influenced by user desires and requirements and further external input may be desirable in these evaluations.
The AHPS forecast accuracy performance measures provide a strong connection between the programmatic and scientific activities.  Accuracy measures could be applicable both at the programmatic and scientific levels.  They are applied here at the program level because better forecast accuracy is identified as one objective of AHPS.  Achieving the desired forecast accuracy levels then becomes an objective for the AHPS science activities.  Appropriate science level performance measures can be defined to quantify progress in achieving this objective.  Possible measures could range in scope from implementation of required scientific tools to rate of accuracy improvements.
While this analysis has focused entirely on potential accuracy measures, there are several overall potential problems that affect the application of any such metric.  The largest of these is related to sampling and obtaining adequate statistics.  Because of the episodic nature of climate and streamflow, it may be difficult to obtain meaningful statistics over relatively short periods of time.  This is particularly relevant if one is attempting to track year-to-year evolution of the program.  Furthermore, there is significant potential for the statistics to be influenced by serial correlation between verification sites.  Available verification data will be further limited by avoiding possible correlation.  Any accuracy computations must also be mindful of possible human activities not considered in the forecasts.  The existence of dams and regulation of flow could potentially affect measurements at verification sites.  Computation of performance measures must either neglect such sites or attempt to compensate for the human activities.  Clearly the merit of any accuracy performance measure is tied to the quality of the verification statistics that can be obtained.  These concerns, voiced strongly in interviews with Frank Richards, emphasize the importance of incorporating additional programmatic performance measures addressing such other topics as product use and user satisfaction.  
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Figure 1.  Deterministic forecast evaluation for blow flood stage events from the MBRFC, NCRFC, and OHRFC.
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Figure 2.  Deterministic forecast evaluations for combined response time forecasts from the MBRFC, NCRFC, and OHRFC.





Table 1.  Summary of verification sites from the NWS verification database used in the deterministic accuracy measure evaluation.





RFC�
ID�
Location�
River (Response)�
Status�
�
�
CHPK1�
Chapman 4 NNW�
Chapman (M)�
Non-AHPS�
�
�
DELK1�
Delia 6 SE�
Big Soldier (F)�
Non-AHPS�
�
�
DSOK1�
De Soto�
Kansas (S)�
Non-AHPS�
�
�
MSCK1�
Muscotah�
Delaware (F)�
Non-AHPS�
�
MBRFC�
PXCK1�
Paxico 1SW�
Mill (F)�
Non-AHPS�
�
�
TNGK1�
Tonganoxie�
Stranger (M)�
Non-AHPS�
�
�
TOPK1�
Topeka 4 NW�
Big Soldier (M)�
Non-AHPS�
�
�
TPAK1�
Topeka�
Kansas (S)�
Non-AHPS�
�
�
WMGK1�
Wamego #2�
Kansas (S)�
Non-AHPS�
�
�
ALOI4�
Waterloo�
Cedar (F)�
AHPS�
�
�
CHSI2�
Chester�
Mississippi (M)�
AHPS�
�
�
DEWI4�
Dewitt�
Wapsipinicon (F)�
AHPS�
�
�
ERKM7�
Eureka�
Meranec (F)�
AHPS�
�
NCRFC�
EVRM4�
Evart�
Muskegon (S)�
Non-AHPS�
�
�
GTTI4�
Guttenberg (L&D 10)�
Mississippi (S)�
AHPS�
�
�
JDNM5�
Jordan 1 S�
Minnesota (S)�
AHPS�
�
�
RCKI2�
Quad Cities (L&D 15)�
Mississippi (F)�
AHPS�
�
�
VNMI4�
Van Meter�
Raccoon (M)�
AHPS�
�
�
ACMP1�
Acmetonia – Lock #3�
Allegheny (S)�
AHPS�
�
�
BDDP1�
Braddock – Lock #2�
Monongahela (S)�
AHPS�
�
�
CCNO1�
Cincinnati 0.6 SSE�
Ohio (S)�
Non-AHPS�
�
�
CRSW2�
Charleston (RR Bridge)�
Kanawha (M)�
AHPS�
�
�
DEFO1�
Defiance 1 WSW�
Maumee (S)�
AHPS�
�
�
EVVI3�
Evansville�
Ohio (S)�
Non-AHPS�
�
�
FFTK2�
Frankfort�
Kentucky (S)�
Non-AHPS�
�
�
FRKP1�
Franklin�
Allegheny (M)�
AHPS�
�
OHRFC�
GRTW2�
Grantsville�
L Kanawha (M)�
AHPS�
�
�
LAFI3�
Lafayette�
Wabash (M)�
Non-AHPS�
�
�
MLGO1�
Milford�
L Miami (F)�
Non-AHPS�
�
�
MLPK2�
Louisville (McAlpine L&D)�
Ohio (S)�
Non-AHPS�
�
�
PKTO1�
Piketon 0.4 WNW�
Scioto (S)�
AHPS�
�
�
PORO1�
Portsmouth 0.4 SW�
Ohio (S)�
AHPS�
�
�
PSNW2�
Parsons (nr)�
Cheat (F)�
AHPS�
�
�
PTRI3�
Petersburg�
White (S)�
Non-AHPS�
�
�
WILW2�
Williamson�
Tug Fork (M)�
AHPS�
�
�
WLBK2�
Williamsburg�
Cumberland (M)�
AHPS�
�






Table 2.  Forecast points and flood stage used for ensemble forecast verification.





Forecast Point�
Name�
Flood Stage (ft)�
�
BBVK2�
Barbourville, KY�
27�
�
BEAP1�
Beaver Falls�
15�
�
BELW2�
Belington�
14�
�
BRAW2�
Branchland�
30�
�
BVLO1�
Bourneville�
12�
�
CARI2�
Carmi�
27�
�
CLAT1�
Celina�
40�
�
CLKW2�
Clarksburg�
14�
�
CLLP1�
Connelsville�
12�
�
CMBK2�
Cumberland�
12�
�
CNFP1�
Confluence�
12�
�
COKP1�
Cooksburg�
13�
�
COLO1�
Columbus�
24�
�
DBVO1�
Darbyville�
10�
�
DLYW2�
Dailey�
14�
�
ECMP1�
East Conemaugh�
25�
�
ELKK2�
Elkhorn City�
21�
�
ELRP1�
Eldred�
23�
�
ENTW2�
Enterprise�
17�
�
FDLP1�
Ferndale�
19�
�
FLRK2�
Fullers Station�
49�
�
FRKP1�
Franklin�
17�
�
HAIV2�
Haysi�
19�
�
LARO1�
Larue�
11�
�
LEAO1�
Leavittsburg�
10�
�
LOGW2�
Logan�
23�
�
MEDP1�
Meadville�
14�
�
NCUW2�
New Cumberland Lock�
36�
�
OLNN6�
Olean�
10�
�
PARP1�
Parker�
20�
�
PHIW2�
Philippi�
19�
�
PINW2�
Pineville�
13�
�
PKYK2�
Pikeville�
35�
�
PSNW2�
Parsons�
16�
�
PSTK2�
Prestonsburg�
40�
�
PTVK2�
Paintsville�
35�
�
WILW2�
Williamson�
27�
�
WLBK2�
Williamsburg�
21�
�
WRTO1�
Worthington�
13�
�
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Figure 3.  Deterministic forecast errors for forecast points from the NCRFC and OHRFC.
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Figure 4.  Deterministic forecast errors for points from the OHRFC only.
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Figure 5.  Brier scores for flooding accuracy of the weekly mean stage exceedance forecasts.  Note the extremely small values and range of scores.  Where no bar is visible, the Brier score was a perfect 0.0.  The overall score for all the points is shown at the right in red.
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Figure 6.  Brier scores for flooding accuracy of the monthly maximum stage exceedance forecasts.  Where no bar is visible, the Brier score was a perfect 0.0.  The overall score for all the points is shown at the right in red.
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Figure 7.  Brier scores for flooding accuracy for only those monthly maximum stage forecasts where flooding was observed.














Table 3.  Forecast probability for exceeding flood stage for cases where flooding occurred.





Forecast Point�
Probability�
�
BBVK2�
0.22�
�
�
0.21�
�
�
0.23�
�
�
0.20�
�
CARI2�
1.0�
�
�
0.30�
�
WLBK2�
0.33�
�
�
0.32�
�
�
0.38�
�
�
0.36�
�
�
0.37�
�
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